Basics of Machine Learning

“Naive Bayes, decision trees, zero-frequency, missing data, ID3 algorithm, information gain, overfitting, confidence intervals, nearest-neighbour method, Parzen windows, K-D trees, K-means, scree plot, gaussian mixtures, EM algorithm, dimensionality reduction, principal components, eigen-faces, agglomerative clustering, single-link vs. complete link, lance-williams algorithm…”

http://homepages.inf.ed.ac.uk/vlavrenk/iaml.html