How TCP backlog works in Linux

“When an application puts a socket into LISTEN state using the listen syscall, it needs to specify a backlog for that socket. The backlog is usually described as the limit for the queue of incoming connections.

Because of the 3-way handshake used by TCP, an incoming connection goes through an intermediate state SYN RECEIVED before it reaches the ESTABLISHED state and can be returned by the accept syscall to the application (see the TCP state diagram). This means that a TCP/IP stack has two options to implement the backlog queue for a socket in LISTEN state:

  1. The implementation uses a single queue, the size of which is determined by the backlog argument of the listen syscall. When a SYN packet is received, it sends back a SYN/ACK packet and adds the connection to the queue. When the corresponding ACK is received, the connection changes its state to ESTABLISHED and becomes eligible for handover to the application. This means that the queue can contain connections in two different state: SYN RECEIVED and ESTABLISHED. Only connections in the latter state can be returned to the application by the accept syscall.
  2. The implementation uses two queues, a SYN queue (or incomplete connection queue) and an accept queue (or complete connection queue). Connections in state SYN RECEIVED are added to the SYN queue and later moved to the accept queue when their state changes to ESTABLISHED, i.e. when the ACK packet in the 3-way handshake is received. As the name implies, the accept call is then implemented simply to consume connections from the accept queue. In this case, the backlog argument of the listen syscall determines the size of the accept queue…”

http://veithen.github.io/2014/01/01/how-tcp-backlog-works-in-linux.html

Advertisements