The Life of a Serverless Microservice on AWS

In this post, I will demonstrate how you can develop, test, deploy and operate a production ready Serverless Microservice using the AWS ecosystem. The combination of AWS Lambda and Amazon API Gateway allows us to operate a REST endpoint without the need of any virtual machines. We will use Amazon DynamoDB as our database, Amazon CloudWatch for metrics and logs, and AWS CodeCommit and AWS CodePipeline as our delivery pipeline. In the end, you know how to wire together a bunch of AWS services to run a system in production. This post is a summary of my talk The Life of a Serverless Microservice on AWSwhich I gave at DevOpsCon 2016 in Berlin.

5 Algorithms Every Web Developer Can Use and Understand

Welcome to 5 Algorithms Every Web Developer Can Use and Understand!

We have compiled a short primer for web developers on how and when to harness the power of algorithms in your website or other web applications. Each chapter features one algorithm available with the Algorithmia API. Using this tool, developers with limited background in mathematics can access these amazing utilities. In fact, only basic, high-school level mathematics is used in this book. However, even if you are an advanced mathematician, the examples may still prove to be useful, because they clearly display how to use the API within your application.

The world of algorithms is as endless as it is fascinating. Working as a programmer encourages us to pick up new tools and bring them into our applications. However, if we never take the time to explore the areas we are not familiar with, then we could be missing opportunities to write better code. I believe that the five algorithms featured here are some of the most practical for web engineers to use in their applications. Harnessing the Algorithmia API takes these complex challenges – related to both computation and infrastructure – and turns them in to low hanging fruit.

Wide & Deep Learning: Better Together with TensorFlow

“Learn the rules like a pro, so you can break them like an artist.” — Pablo Picasso

The human brain is a sophisticated learning machine, forming rules by memorizing everyday events (“sparrows can fly” and “pigeons can fly”) and generalizing those learnings to apply to things we haven’t seen before (“animals with wings can fly”). Perhaps more powerfully, memorization also allows us to further refine our generalized rules with exceptions (“penguins can’t fly”). As we were exploring how to advance machine intelligence, we asked ourselves the question—can we teach computers to learn like humans do, by combining the power of memorization and generalization?

It’s not an easy question to answer, but by jointly training a wide linear model (for memorization) alongside a deep neural network (for generalization), one can combine the strengths of both to bring us one step closer. At Google, we call it Wide & Deep Learning. It’s useful for generic large-scale regression and classification problems with sparse inputs (categorical features with a large number of possible feature values), such as recommender systems, search, and ranking problems.

Today we’re open-sourcing our implementation of Wide & Deep Learning as part of the TF.Learn APIso that you can easily train a model yourself. Please check out the TensorFlow tutorials on Linear Models and Wide & Deep Learning, as well as our research paper to learn more.

How to implement a programming language in JavaScript

This is a tutorial on how to implement a programming language. If you ever wrote an interpreter or a compiler, then there is probably nothing new for you here. But, if you’re using regexps to “parse” anything that looks like a programming language, then please read at least the section on parsing. Let’s write less buggy code!

The ToC on the right is in “simple-to-advanced” order. I’d recommend you not to skip forward, unless you know the subject well. You can always refer back if you don’t understand something. Also, questions and feedback are very much appreciated!

The target audience is the average JavaScript / NodeJS programmer.

What are we going to learn

  • What is a parser, and how to write one.
  • How to write an interpreter.
  • Continuations, and why are they important.
  • Writing a compiler.
  • How to transform code to continuation-passing style.
  • A few basic optimization techniques.
  • Examples of what our λanguage brings new over plain JavaScript.

In between, I’m going to argue why Lisp is a great programming language. However, the language we will work on is not a Lisp. It has a richer syntax (classical infix notation that everybody knows) and will be about as powerful as Scheme, except for macros. Sadly or not, macros are the ultimate bastion of Lisp, something that other languages just can’t conquer (unless they are called Lisp dialects). [Yes, I know about SweetJS… close but no cigar.]

But first, let’s dream up a programming language.