Lessons learned from three container-management systems over a decade

Though widespread interest in software containers is a relatively recent phenomenon, at Google we have been managing Linux containers at scale for more than ten years and built three different container-management systems in that time. Each system was heavily influenced by its predecessors, even though they were developed for different reasons. This article describes the lessons we’ve learned from developing and operating them.

The first unified container-management system developed at Google was the system we internally call Borg.7 It was built to manage both long-running services and batch jobs, which had previously been handled by two separate systems: Babysitter and the Global Work Queue. The latter’s architecture strongly influenced Borg, but was focused on batch jobs; both predated Linux control groups. Borg shares machines between these two types of applications as a way of increasing resource utilization and thereby reducing costs. Such sharing was possible because container support in the Linux kernel was becoming available (indeed, Google contributed much of the container code to the Linux kernel), which enabled better isolation between latency-sensitive user-facing services and CPU-hungry batch processes.

As more and more applications were developed to run on top of Borg, our application and infrastructure teams developed a broad ecosystem of tools and services for it. These systems provided mechanisms for configuring and updating jobs; predicting resource requirements; dynamically pushing configuration files to running jobs; service discovery and load balancing; auto-scaling; machine-lifecycle management; quota management; and much more. The development of this ecosystem was driven by the needs of different teams inside Google, and the result was a somewhat heterogeneous, ad-hoc collection of systems that Borg’s users had to configure and interact with, using several different configuration languages and processes. Borg remains the primary container-management system within Google because of its scale, breadth of features, and extreme robustness.

Omega,6 an offspring of Borg, was driven by a desire to improve the software engineering of the Borg ecosystem. It applied many of the patterns that had proved successful in Borg, but was built from the ground up to have a more consistent, principled architecture. Omega stored the state of the cluster in a centralized Paxos-based transaction-oriented store that was accessed by the different parts of the cluster control plane (such as schedulers), using optimistic concurrency control to handle the occasional conflicts. This decoupling allowed the Borgmaster’s functionality to be broken into separate components that acted as peers, rather than funneling every change through a monolithic, centralized master. Many of Omega’s innovations (including multiple schedulers) have since been folded into Borg.

The third container-management system developed at Google was Kubernetes.4 It was conceived of and developed in a world where external developers were becoming interested in Linux containers, and Google had developed a growing business selling public-cloud infrastructure. Kubernetes is open source—a contrast to Borg and Omega, which were developed as purely Google-internal systems. Like Omega, Kubernetes has at its core a shared persistent store, with components watching for changes to relevant objects. In contrast to Omega, which exposes the store directly to trusted control-plane components, state in Kubernetes is accessed exclusively through a domain-specific REST API that applies higher-level versioning, validation, semantics, and policy, in support of a more diverse array of clients. More importantly, Kubernetes was developed with a stronger focus on the experience of developers writing applications that run in a cluster: its main design goal is to make it easy to deploy and manage complex distributed systems, while still benefiting from the improved utilization that containers enable.

This article describes some of the knowledge gained and lessons learned during Google’s journey from Borg to Kubernetes.

http://queue.acm.org/detail.cfm?id=2898444

Advertisements