WHEN TO USE LAMBDA LAYERS

AWS introduced Lambda Layers at re:invent 2018 as a way to share code and data between functions within and across different accounts. It’s a useful tool and something many AWS customers have been asking for. However, since we already have numerous ways of sharing code, including package managers such as NPM, when should we use Layers instead?

In this post, we will look at how Lambda Layers works, the problem it solves and the new challenges it introduces. And we will finish off with some recommendations on when to use it.

https://lumigo.io/blog/lambda-layers-when-to-use-it/

Python at Netflix

As many of us prepare to go to PyCon, we wanted to share a sampling of how Python is used at Netflix. We use Python through the full content lifecycle, from deciding which content to fund all the way to operating the CDN that serves the final video to 148 million members. We use and contribute to many open-source Python packages, some of which are mentioned below. 

https://medium.com/netflix-techblog/python-at-netflix-bba45dae649e

How Twitch monitors its services with Amazon CloudWatch

Twitch is the leading service and community for multiplayer entertainment and is owned by Amazon. Twitch also provides social and features and micro-transaction features that drive content engagement for its audiences. These services operate at a high transaction volume.

Twitch uses Amazon CloudWatch to monitor its business-critical services. It emits custom metrics then visualizes and alerts based on predefined thresholds for these key metrics. The high volume of transactions handled by the Twitch services makes it difficult to design a metric ingestion strategy that provides sufficient throughput of data while balancing the cost of data ingestion.

Amazon CloudWatch client-side aggregations is a new feature of the PutMetricData API service that helps customers to aggregate data on the client-side, which increases throughput and efficiency. In this blog post we’ll show you how Twitch uses client-side data aggregations to build a more effective metric ingestion architecture while achieving substantial cost reductions.

https://aws.amazon.com/pt/blogs/mt/how-twitch-monitors-its-services-with-amazon-cloudwatch/

PySnooper – Never use print for debugging again

PySnooper is a poor man’s debugger.

You’re trying to figure out why your Python code isn’t doing what you think it should be doing. You’d love to use a full-fledged debugger with breakpoints and watches, but you can’t be bothered to set one up right now.

You want to know which lines are running and which aren’t, and what the values of the local variables are.

Most people would use print lines, in strategic locations, some of them showing the values of variables.

PySnooper lets you do the same, except instead of carefully crafting the right print lines, you just add one decorator line to the function you’re interested in. You’ll get a play-by-play log of your function, including which lines ran and when, and exactly when local variables were changed.

What makes PySnooper stand out from all other code intelligence tools? You can use it in your shitty, sprawling enterprise codebase without having to do any setup. Just slap the decorator on, as shown below, and redirect the output to a dedicated log file by specifying its path as the first argument.

https://github.com/cool-RR/pysnooper

Orchestrating backend services with AWS Step Functions

The problem

In many use cases, there are processes that need to execute multiple tasks. We build micro-services or server-less functions like AWS Lambda functions to carry out these tasks. Almost all these services are stateless functions and there is need of queues or databases to maintain the state of individual tasks and the process as a whole. Writing code that orchestrates these tasks can be both painful and hard to debug and maintain. It’s not easy to maintain the state of a process in an ecosystem of micro-services and server-less functions.

https://medium.com/engineering-zemoso/orchestrating-backend-services-with-aws-step-functions-8648c90e5a57?hss_channel=tw-920289756919074817

Python for NLP: Introduction to the TextBlob Library

This is the seventh article in my series of articles on Python for NLP. In my previous article, I explained how to perform topic modeling using Latent Dirichlet Allocation and Non-Negative Matrix factorization. We used the Scikit-Learn library to perform topic modeling.

In this article, we will explore TextBlob, which is another extremely powerful NLP library for Python. TextBlob is built upon NLTK and provides an easy to use interface to the NLTK library. We will see how TextBlob can be used to perform a variety of NLP tasks ranging from parts-of-speech tagging to sentiment analysis, and language translation to text classification.

https://stackabuse.com/python-for-nlp-introduction-to-the-textblob-library/

AWS Lambda Power Tuning

Step Functions state machine generator for AWS Lambda Power Tuning.

The state machine is designed to be quick and language agnostic. You can provide any Lambda Function as input and the state machine will estimate the best power configuration to minimize cost. Your Lambda Function will be executed in your AWS account (i.e. real HTTP calls, SDK calls, cold starts, etc.) and you can enable parallel execution to generate results in just a few seconds.

https://github.com/alexcasalboni/aws-lambda-power-tuning