Throttling Third-Party API calls with AWS Lambda

In the serverless world, we often get the impression that our applications can scale without limits. With the right design (and enough money), this is theoretically possible. But in reality, many components of our serverless applications DO have limits. Whether these are physical limits, like network throughput or CPU capacity, or soft limits, like AWS Account Limits or third-party API quotas, our serverless applications still need to be able to handle periods of high load. And more importantly, our end users should experience minimal, if any, negative effects when we reach these thresholds.

There are many ways to add resiliency to our serverless applications, but this post is going to focus on dealing specifically with quotas in third-party APIs. We’ll look at how we can use a combination of SQS, CloudWatch Events, and Lambda functions to implement a precisely controlled throttling system. We’ll also discuss how you can implement (almost) guaranteed ordering, state management (for multi-tiered quotas), and how to plan for failure. Let’s get started!

https://www.jeremydaly.com/throttling-third-party-api-calls-with-aws-lambda/

Advertisements

Multi-region serverless backend 

In 2018, I wrote a series of blog posts on building a multi-region, active-active, serverless architecture on AWS [1, 2, 3 and 4]. The solution was built using DynamoDB Global Tables, Lambda, the regional API Gateway feature, and Route 53 routing policies. It worked well as a resiliency pattern and as a disaster recovery (DR) strategy . But there was an issue.

https://medium.com/@adhorn/multi-region-serverless-backend-reloaded-1b887bc615c0

HOW DOOM FIRE WAS DONE

The Game Engine Black Book: DOOM features a whole chapter about DOOM console ports and the challenges they encountered. The utter failure of the 3DO, the difficulties of the Saturn due to its affine texture mapping, and the amazing “reverse-engineering-from- scratch” by Randy Linden on Super Nintendo all have rich stories to tell.

Once heading towards disaster[1], the Playstation 1 (PSX) devteam managed to rectify course to produce a critically and commercially acclaimed conversion. Final DOOM was the most faithful port when compared to the PC version. The alpha blended colored sectors not only improved visual quality, they also made gameplay better by indicating the required key color. Sound was also improved via reverberation effects taking advantage of the PSX’s Audio Processing Unit.

The devteam did such a good job that they found themselves with a few extra CPU cycles they decided to use to generate animated fire both during both the intro and the gameplay. Mesmerized, I tried to find out how it was done. After an initial calling found no answer, I was about to dust off my MIPS book to rip open the PSX executable when Samuel Villarreal replied on Twitter to tell me he had already reverse-engineered the Nintendo 64 version[2]. I only had to clean, simplify, and optimize it a little bit.

It was interesting to re-discover this classic demoscene effect; the underlying idea is similar to the first water ripple many developers implemented as a programming kata in the 90’s. The fire effect is a vibrant testimony to a time when judiciously picked palette colors combined with a simple trick were the only way to get things done.

http://fabiensanglard.net/doom_fire_psx/