Python for NLP: Introduction to the TextBlob Library

This is the seventh article in my series of articles on Python for NLP. In my previous article, I explained how to perform topic modeling using Latent Dirichlet Allocation and Non-Negative Matrix factorization. We used the Scikit-Learn library to perform topic modeling.

In this article, we will explore TextBlob, which is another extremely powerful NLP library for Python. TextBlob is built upon NLTK and provides an easy to use interface to the NLTK library. We will see how TextBlob can be used to perform a variety of NLP tasks ranging from parts-of-speech tagging to sentiment analysis, and language translation to text classification.


The Illustrated Word2vec

I find the concept of embeddings to be one of the most fascinating ideas in machine learning. If you’ve ever used Siri, Google Assistant, Alexa, Google Translate, or even smartphone keyboard with next-word prediction, then chances are you’ve benefitted from this idea that has become central to Natural Language Processing models. There has been quite a development over the last couple of decades in using embeddings for neural models (Recent developments include contextualized word embeddings leading to cutting-edge models like BERT and GPT2).

Word2vec is a method to efficiently create word embeddings and has been around since 2013. But in addition to its utility as a word-embedding method, some of its concepts have been shown to be effective in creating recommendation engines and making sense of sequential data even in commercial, non-language tasks. Companies like AirbnbAlibabaSpotify, and Anghami have all benefitted from carving out this brilliant piece of machinery from the world of NLP and using it in production to empower a new breed of recommendation engines.

In this post, we’ll go over the concept of embedding, and the mechanics of generating embeddings with word2vec. But let’s start with an example to get familiar with using vectors to represent things. Did you know that a list of five numbers (a vector) can represent so much about your personality?

Practical Text Classification With Python and Keras

Imagine you could know the mood of the people on the Internet. Maybe you are not interested in its entirety, but only if people are today happy on your favorite social media platform. After this tutorial, you’ll be equipped to do this. While doing this, you will get a grasp of current advancements of (deep) neural networks and how they can be applied to text.

Reading the mood from text with machine learning is called sentiment analysis, and it is one of the prominent use cases in text classification. This falls into the very active research field of natural language processing (NLP). Other common use cases of text classification include detection of spam, auto tagging of customer queries, and categorization of text into defined topics. So how can you do this?

Deep Learning for NLP Best Practices

This post is a collection of best practices for using neural networks in Natural Language Processing. It will be updated periodically as new insights become available and in order to keep track of our evolving understanding of Deep Learning for NLP.

There has been a running joke in the NLP community that an LSTM with attention will yield state-of-the-art performance on any task. While this has been true over the course of the last two years, the NLP community is slowly moving away from this now standard baseline and towards more interesting models.

However, we as a community do not want to spend the next two years independently (re-)discovering the next LSTM with attention. We do not want to reinvent tricks or methods that have already been shown to work. While many existing Deep Learning libraries already encode best practices for working with neural networks in general, such as initialization schemes, many other details, particularly task or domain-specific considerations, are left to the practitioner.

This post is not meant to keep track of the state-of-the-art, but rather to collect best practices that are relevant for a wide range of tasks. In other words, rather than describing one particular architecture, this post aims to collect the features that underly successful architectures. While many of these features will be most useful for pushing the state-of-the-art, I hope that wider knowledge of them will lead to stronger evaluations, more meaningful comparison to baselines, and inspiration by shaping our intuition of what works.

I assume you are familiar with neural networks as applied to NLP (if not, I recommend Yoav Goldberg’s excellent primer [43]) and are interested in NLP in general or in a particular task. The main goal of this article is to get you up to speed with the relevant best practices so you can make meaningful contributions as soon as possible.

I will first give an overview of best practices that are relevant for most tasks. I will then outline practices that are relevant for the most common tasks, in particular classification, sequence labelling, natural language generation, and neural machine translation.

Disclaimer: Treating something as best practice is notoriously difficult: Best according to what? What if there are better alternatives? This post is based on my (necessarily incomplete) understanding and experience. In the following, I will only discuss practices that have been reported to be beneficial independently by at least two different groups. I will try to give at least two references for each best practice.